PRE-ALERT

<u>Pre-hospital Rapid Evaluation via Ambulance Lead Emergency Remote Telemedicine</u>

Sherita Chapman Smith, MD Assistant Professor, Dept of Neurology Director, Inpatient Stroke Service

Why not think inside the box?

- Efficacy and safety of stroke thrombolysis is *time dependent*
 - AHA/ASA developed *Target: Stroke* initiative to increase number of AIS patients treated within a 60 min DNT
 - Called for innovative approaches to prehospital stroke care
- Innovative approaches to enhance prehospital stroke care
 - Prenotification
 - Administration of neuroprotective agents in the field
 - Specialized ambulances
- Prehospital Mobile Telestroke
 - Improve accuracy of prehospital stroke diagnosis
 - Facilitate appropriate patient triage
 - Reduce stroke onset-to-treatment time
 - Assist in prehospital stroke research

	Type of methodology	Delivery	Wireless cellular communication	Telemedicine platform	Assessment	Results
LaMonte et al. 2000 North America	A pilot feasibility study	Store & forward	2G	Existing open system commercial components with parallel array of 4 Restructured		31 testing sessions conducted 18 laboratory tests 7 ambulance tests 6 during patient transport Unstable transmission
LaMonte et al. 2004	Validity & Reliability via Simulation study using the NINDS training videotape	Store & Forward	2G	digital cellular phones	NIHSS	Interrater reliability high Kappra values >0.5
North America	Evaluate time to treatment by comparing with historic controls					Compared with historic controls 17 minutes vs. 33 minutes
Liman et al. 2012 Europe	Concept and pilot feasibility simulation study	Mobile, real-time audio- video	3G	Prototype mobile telemedicine device (VIMED CAR)	NIHSS assessments	18/30 assessments could not be performed 12/30 interrater agreement moderate to good
Bergrath et al. 2012 Europe	Prospective pilot feasibility study	Real-time audio- video and still pictures	2G & 3G	Portable data transmission unit (peeg-box) with four parallel data channels from different network providers	14 item stroke history checklist	Partial dropouts of single applications 3/18 Neuro co-evaluations by teleEMS physician in 12 cases Video quality deemed good to excellent Compared to standard of care:
						No difference in time or diagnostic quality

	Type of methodology	Delivery	Wireless cellular communication	Telemedicine platform	Assessment	Results
Van Hooff et al. 2013 Europe	Pilot feasibility simulation study	Mobile, real- time audio- video	4G	Prototype mobile telemedicine device	Unassisted Telestroke Scale (UTSS)	40/41 assessments completed Excellent intra-rater and interrater agreement
Wu et al. 2014 North America	Pilot feasibility simulation study	Mobile, real- time audio- video	4G	Existing portable telemedicine unit – RP- Xpress system	NIHSS assessments	34/40 completed without major technical difficulty 30/34 matched the NIHSS by +2 points Intraclass correlation 0.997 Moderate to excellent interrater agreement
Eadie et al. 2014 Europe	Pilot feasibility simulation study	Mobile real- time audio- video	2G & 3G	Omni-Hub communications system	NIHSS,mRS, Recognition of stroke in the Emergency Room score, and exclusion criteria for thrombolysis	19 mobile and 4 stationary assessments completed High ratings when asked whether the AV system allowed adequate diagnosis
iTREAT North America	Pilot feasibility simulation study	Mobile, real- time audio- video	4G	Off the shelf, tablet- based telemedicine system	NIHSS assessments	27 completed without major technical difficulty Intra-class correlation UVA 0.98 UCSF 0.94 Combined 0.96
Itrat et al. 2016 North America	Prospective observational study	Mobile, real- time audio- video	4G LTE	Existing portable telemedicine unit – RP- Xpress system	Evaluation and treatment of prehospital mobile telemed vs control	99/100 encounters completed 93/100 conducted without any transmission disruptions Median log-in duration – 20 min

Study Setting

- Collaboration between the VCU Departments of Neurology and Emergency Medicine, VCU Comprehensive Stroke Center, VCU Office of Telemedicine and Richmond Ambulance Authority (RAA)
- Catchment area is the City of Richmond with transportation to VCU, a Level I Trauma Center
- The City of Richmond EMS system (RAA) serves a metro area of 222,000 with over 27,000 transports per year

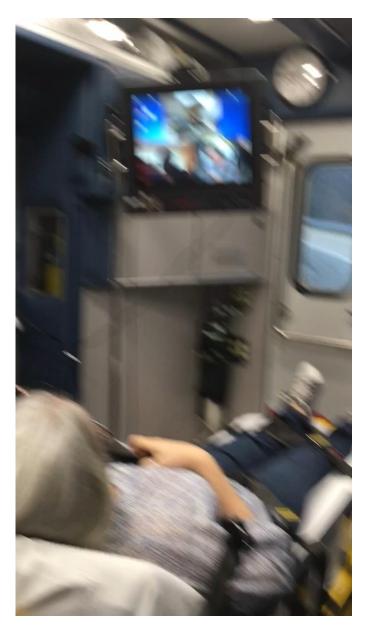
Local Data for CY 2015					
VCU Health Hospital					
Number of ischemic stroke	476				
discharges					
Number of TIA discharges	45				
IV tPA given to patients in the ED	71	30 min median door to			
		needle time			
Patients transferred to VCU post	25				
IV-tPA					
Number of Mechanical	60	49 min - fastest door to			
thrombectomies		groin time			

	Month	Impression	Sum
	Oct-2014	CVA/TIA-PCR	21
Number of Suspected Stroke/TIA patients transported to VCU via	Nov-2014	CVA/TIA-PCR	11
	Dec-2014	CVA/TIA-PCR	14
	Jan-2015	CVA/TIA-PCR	8
RAA	Feb-2015	CVA/TIA-PCR	13
	Mar-2015	CVA/TIA-PCR	17
	Apr-2015	CVA/TIA-PCR	4
	May-2015	CVA/TIA-PCR	20
	Jun-2015	CVA/TIA-PCR	12

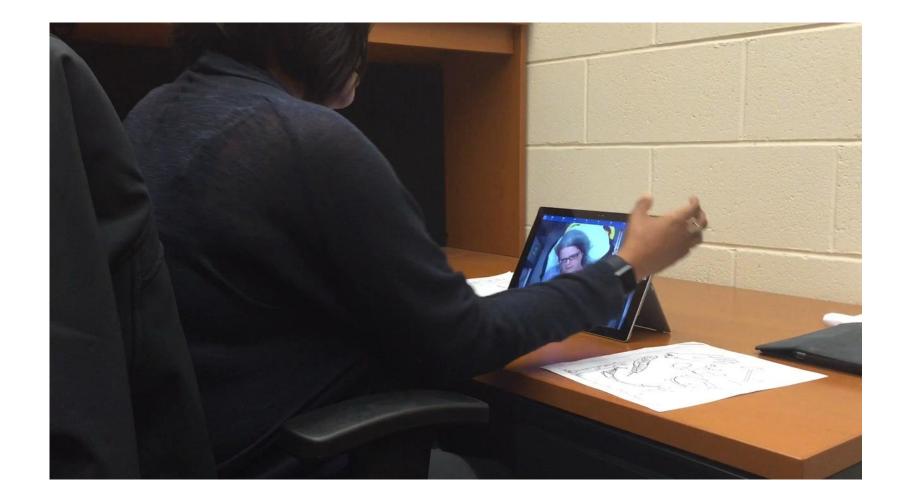
Detection

Independent documentation of

NIHSS


decision made

treatment plan


View of Ambulance

Ambulance Evaluation

Video Clip – Physician Evaluation

Standardized Patient Perceptions

5.3% Doctor caring for people in ambulance before they get to the hospital 47.4% 5.3% 42.1% will became popular soon. Video access to a doctor before I get to the hospital can improve 5.3% 21.1% 73.7% patient outcomes. I felt the doctor was able to see what was wrong with me from the 42.1% 42.1% 10.5% 5.3% video call. It was nice to know I was seeing a doctor right away. 63.2% 36.8% I felt uncomforable with the doctor not being in the ambulance. 63.2% 36.8% 10% 60% 70% 0% 20% 30% 40% 50% 80% 90% 100% Percentage

Strongly Agree Agree Disagree Strongly Disagree N/A

Acknowledgements

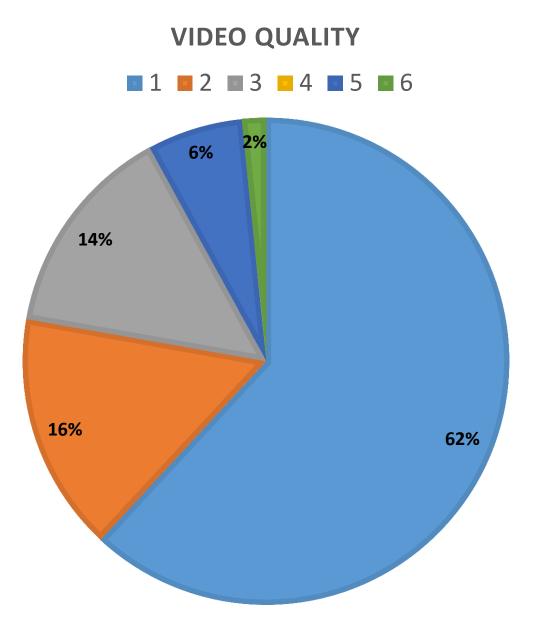
- PRE-ALERT Team
 - Prachi Mehndiratta
 - Warren Felton, III
 - Andres Ruiz
 - Basit Rahim
 - Qasier Toqeer
 - Nabil Khandker
 - Kaitlynne Heath
 - Baaba Blankson
 - Jamie Ricks
 - Pamela Brown
 - Jeneane Henry
 - Poanna Bennam
 - Laverne Jones
 - Moshe Feldman
 - Juan Lu
 - Joseph Ornato

- **Richmond Ambulance Authority**
 - Rob Lawrence
 - Wayne Harbour
 - Chip Decker

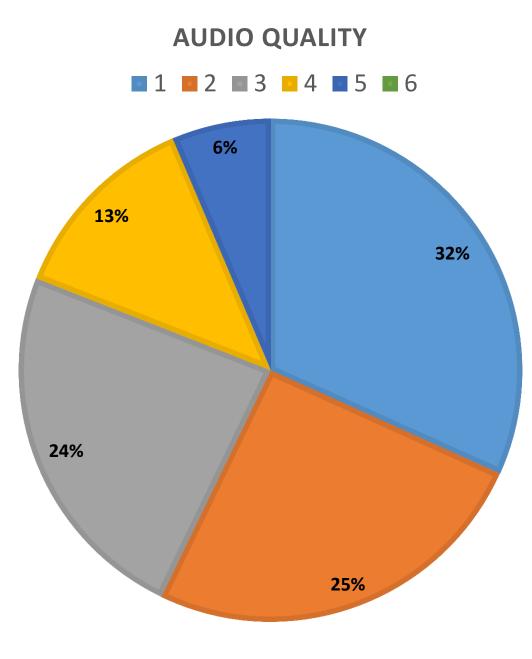
- <u>Office of Telemedicine</u>
 - Tamara Broadnax
 - Vladimir Lavrentyev

SwyMed Inc

VCU Human Simulation Center


VCU Comprehensive Stroke Center

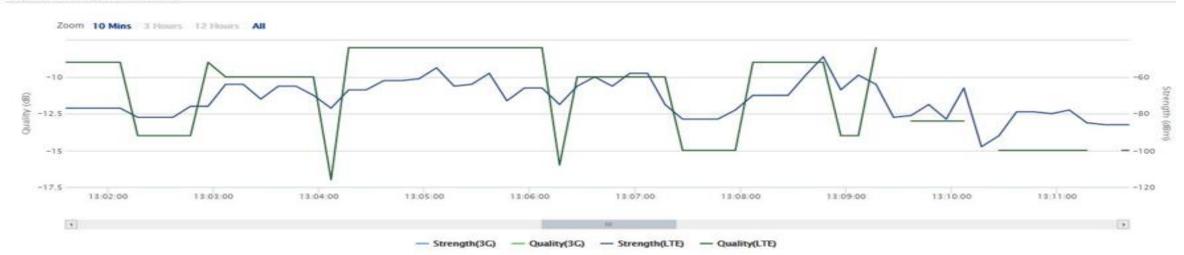
Funding for this project provided by: VCU Dean's Academic Enhancement Funds VCU CCTR Endowment Fund CTSA UL1TR000058 NIH NCATS


Additional Slides

Lessons Learned

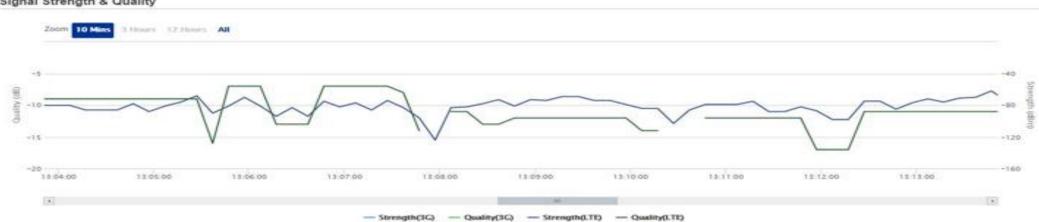
Video Quality

- 1 Continuously accessible signal
- 2 Predominantly accessible video signal
- 3 More accessible video signal than inaccessible
- 4 more inaccessible than accessible
- 5 Frequent loss of signal, predominantly inaccessible
- 6 No signal or continuously inaccessible

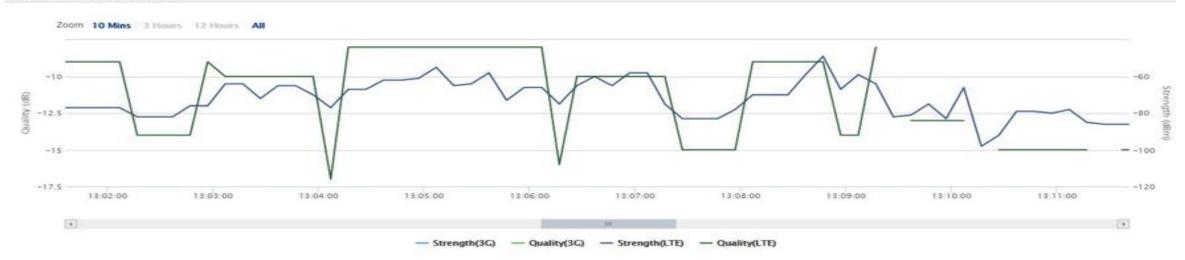

Audio Quality

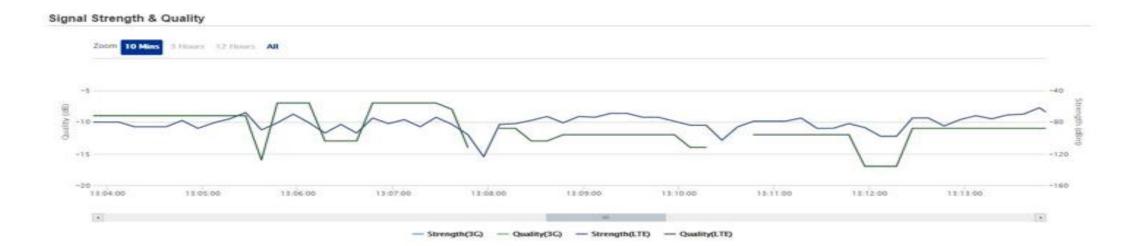
- 1 Continuously accessible signal
- 2 Predominantly accessible video signal
- 3 More accessible video signal than inaccessible
- 4 more inaccessible than accessible
- 5 Frequent loss of signal, predominantly inaccessible
- 6 No signal or continuously inaccessible

Signal Strength & Quality


Signal Strength & Quality

Signal Strength & Quality




- Strength(3C) - Quality(3C) - Strength(LTE) - Quality(LTE)

Signal Strength & Quality

Signal Strength & Quality

Conclusions & Future Directions

- Use of prehospital mobile telemedicine to evaluate patients en route to the hospital is feasible
- Development requires strong collaborations and usability testing
- Future Directions
 - Second simulation after implementation of changes
 - Repositioning of speaker-microphone
 - Wireless headsets for patient and EMS provider
 - USB headset for physician
 - Bonded AT&T-Verizon
 - Usability testing of portable mobile platform compared to ambulance installed
 - Prospective clinical efficacy study with stroke patients